III Semester M.Sc. Degree Examination, December 2014 (Semester Scheme) (NS) MATHEMATICS M-301 : Topology – II

Time : 3 Hours

Max. Marks: 80

Instructions : i) Answer any five full questions choosing atleast two from each Part. ii) All questions carry equal marks.

PART – A

1.	a)	Prove that a topological space is compact if and only if every family of closed sets having the finite intersection property has a non-empty intersection.	8
	b)	Show that a metric space (x, d) is sequentially compact if and only if it is countably compact.	8
2.	a)	Define a locally compact space. Prove that a T_2 -space is locally compact if and only if each point has a neighbourhood whose closure is compact.	6
	b)	Prove that a compact metric space is complete.	5
	c)	Show that a complete totally bounded metric space is compact.	5
3.	a)	Define :	
		i) Second countable space	

ii) Separable space.

	Show that every second countable space is a separable space. Is the converse true ? Justify.	6
b)	Show that the property of being a separable space is topological.	4
c)	Show that every second countable space is Lindelof.	6

4.	a)	Show that in a T_0 - space, the closures of distinct points are distinct.	6
	b)	Show that a topological space is a ${\rm T_1}$ - space if and only if all singletons in it are closed.	5
	c)	What is T_2 - space ? Prove that in a T_2 - space a convergent sequence has a unique limit.	5
		PART – B	
5.	a)	Define a T_3 - space, prove that a topological space (X, T) is regular if and only if given an open set G and $x \in G$ there exists an open set G* such that $x \in G^* \subset \overline{G^*} \subset G$.	6
	b)	Prove that the property of being a normal space is closed hereditary.	4
	c)	Prove that a compact Hausdorff space is normal.	6
6.	a)	State and prove Urysohn's lemma.	10
	b)	Prove that a topological space X is completely regular if and only if for every $x \in X$ and every open set G containing x there exists a continuous mapping f of X into [0, 1] such that $f(x) = 0$ and $f(y) = 1 \forall y \in X - G$. Hence prove that for every two distinct points x and y in a Tychnoff space X there exists a real valued continuous mapping f of X such that $f(x) \neq f(y)$.	6
7.	a)	Show that a normal space is completely regular if and only if it is regular.	6
	b)	State and prove Alexandroff's one point compactification.	10
8.	a)	Define :	8
		i) α -cuts	
		ii) strong α -cuts	
		Let X be a set and A be a fuzzy subset of X then prove that	
		i) if $\alpha \leq \beta$ then $\alpha_A \supset \beta_A$	

- $\text{ii) if } \alpha \leq \beta \ \text{then} \, \alpha_{+\mathsf{A}} \supset \beta_{+\mathsf{A}} \ \text{for } \alpha, \ \beta \in [0,1] \, .$
- b) State and prove first decomposition theorem.

8

PG – 142